Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Coronaviruses ; 2(8) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2277709

ABSTRACT

Background: The current pandemic outbreak of COVID-19 due to viral infections by SARS-CoV-2 has now become associated with severe commotion on global healthcare and the economy. Objective(s): In this extreme situation, when vaccine or effective new drugs against COVID-19 are still not available, the only quick and feasible therapeutic alternative would be the drug repurpos-ing approach. Method(s): In the present work, in silico screening of some anti-viral and antiprotozoal drugs was performed based on docking using Autodock. Result(s): Two known anti-viral drugs, sorivudine and noricumazole B, are predicted to bind to the active site of the viral proteases, namely cysteine-like protease or 3CL protease (3CLpro) and pa-pain-like protease (PLpro), respectively, with a highly favorable free energy of binding. Further, the promising molecules were subjected for checking their activity on other molecular targets in SARS-CoV-2 like spike protein S1, RNA dependent RNA polymerase (RdRp), and angiotensin converting enzyme 2 (ACE2) receptor. But the compounds were found non-effective on the rest of the molecular targets. Conclusion(s): Sorivudine alone or a combination of sorivudine and noricumazole B may be adminis-tered to impede viral replication, though the predicted drug likeliness of noricumazole B is not much satisfactory. These observations are solely based on the results from blind docking with protein molecules and need to be further corroborated with experimental results.Copyright © 2021 Bentham Science Publishers.

2.
Journal of Pharmaceutical Negative Results ; 13(3):865-868, 2022.
Article in English | EMBASE | ID: covidwho-2279142

ABSTRACT

SARS COV2 is one of the most destructive pandemics the world has faced and led to extreme economic losses. For its clinical therapy, SARS-COV-2 3CL Protease (3CLpro) is considered a target because of its crucial role in replication. Inhibition of this 3CLpro can lead to a decrease in viral load and infection. Different studies used various compounds and tested their inhibiting activity. Among them, flavonoids, serine derivatives, Chalcones, and alpha-keto amides were proven to have inhibitory effects. Many in-vitro tests were done to check the binding and inhibition abilities of such compounds. In vivo, some studies are done, but more is needed to prove this discovery. As far as research is concerned, therapeutic drugs against COVID-19 can be made by using such inhibitors. More in vivo studies and animal model experimentation should be done to confirm the findings.Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

3.
Russ Chem Bull ; 72(1): 239-247, 2023.
Article in English | MEDLINE | ID: covidwho-2256145

ABSTRACT

Based on the data obtained by molecular modeling of the non-covalent interaction of non-symmetric N-benzylbispidin-9-ol amides with the active site of the main protease 3CLpro of the SARS-CoV-2 virus, a series of compounds was synthesized, and their inhibitory activity against 3CLpro was studied and compared with that of the known inhibitor ML188 (IC50 = 1.56±0.55 µmol L-1). It was found that only compound 1g containing the 1,4-dihydroindeno[1,2-c]pyrazole fragment showed moderate activity (IC50 = 100±5.7µmol L-1) and was characterized by the highest calculated binding energy among the studied bispidine derivatives according to molecular docking data.

4.
Bulletin of Russian State Medical University ; 2022(6):126-128, 2022.
Article in English | EMBASE | ID: covidwho-2245714

ABSTRACT

The increasing size and density of the human population is leading to an increasing risk of infectious diseases that threaten to spread yet another pandemics. The widespread use of vaccination has reduced morbidity and mortality associated with viral infections and in some cases eradicated the virus from the population entirely. Regrettably, some virus species retain the ability to mutate rapidly and thus evade the vaccine-induced immune response. New antiviral drugs are therefore needed for the treatment and prevention of viral diseases. Modern research into the structures and properties of viral proteases, which are of key importance in the life cycle of viruses, makes it possible, in our opinion, to turn these enzymes into promising targets for the development of effective viral disease control methods.

5.
Pharma Times ; 52(9):14-16, 2020.
Article in English | EMBASE | ID: covidwho-2207608

ABSTRACT

The COVID-19 pandemic has taken the world into a dark time. The number of infected people has crossed 12 crores and the death counts to more than 5 lakhs until July, 2020 worldwide[1]. Moreover, this lockdown is breaking the pillar of the economy of the countries and the condition is getting worse day by day. So, keeping these things in mind, a vaccine or medicine or some other method of cure is urgently needed. To make this possible, the study of the structure of the virus needs to be done very carefully. That is why we focused upon the structural proteins of the SARS-CoV-2 virus. We all know that in this short period of time it is nearly impossible to do XRD and to know the exact structures of all the proteins present in the discussed virus. So in this article, we have tried to predict the most accurate 3D structure of a yet-unmodelled protein of the SARS-CoV-2, so that in the future, our finding may appear helpful for researchers in case of performing XRD of this protein and further research. Copyright © 2020, Indian Pharmaceutical Association. All rights reserved.

6.
Elife ; 112022 10 12.
Article in English | MEDLINE | ID: covidwho-2117843

ABSTRACT

Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.


Humans and viruses are locked in an evolutionary arms race. Viruses hijack cells, using their resources and proteins to build more viral particles; the cells fight back, calling in the immune system to fend off the attack. Both actors must constantly and quickly evolve to keep up with each other. This genetic conflict has been happening for millions of years, and the indelible marks it has left on genes can serve to uncover exactly how viruses interact with the organisms they invade. One hotspot in this host-virus conflict is the complex network of molecules that help to move cargo inside a cell. This system transports elements of the immune system, but viruses can also harness it to make more of themselves. Scientists still know very little about how viruses and the intracellular transport machinery interact, and how this impacts viral replication and the immune response. Stevens et al. therefore set out to identify new interactions between viruses and the transport system by using clues left in host genomes by evolution. They focused on dynein, a core component of this machinery which helps to haul molecular actors across a cell. To do so, dynein relies on adaptor molecules such as 'Ninein-like', or NINL for short. Closely examining the gene sequence for NINL across primates highlighted an evolutionary signature characteristic of host-virus genetic conflicts; this suggests that the protein may be used by viruses to reproduce, or by cells to fend off infection. And indeed, human cells lacking the NINL gene were less able to defend themselves, allowing viruses to grow much faster than normal. Further work showed that NINL was important for a major type of antiviral immune response. As a potential means to sabotage this defence mechanism, some viruses cleave NINL at specific sites and disrupt its role in intracellular transport. Better antiviral treatments are needed to help humanity resist old foes and new threats alike. The work by Stevens et al. demonstrates how the information contained in host genomes can be leveraged to understand what drives susceptibility to an infection, and to pinpoint molecular actors which could become therapeutic targets.


Subject(s)
Dyneins , Viruses , Antiviral Agents , Virus Replication , Immunity, Innate
7.
Front Chem ; 10: 948553, 2022.
Article in English | MEDLINE | ID: covidwho-2109731

ABSTRACT

Considering the significant impact of the recent COVID-19 outbreak, development of broad-spectrum antivirals is a high priority goal to prevent future global pandemics. Antiviral development processes generally emphasize targeting a specific protein from a particular virus. However, some antiviral agents developed for specific viral protein targets may exhibit broad spectrum antiviral activity, or at least provide useful lead molecules for broad spectrum drug development. There is significant potential for repurposing a wide range of existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease (3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules can provide a diverse and novel set of scaffolds for new drug discovery campaigns. In this study, we compared the sequence- and structure-based similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified 22 proteases with similar active-site structures. This structural similarity, characterized by secondary-structure topology diagrams, is evolutionarily divergent within taxonomically related viruses, but appears to result from evolutionary convergence of protease enzymes between virus families. Inhibitors of these proteases that are structurally similar to the SARS-CoV2 3CLpro protease were identified and assessed as potential inhibitors of SARS-CoV2 3CLpro protease by virtual docking. Several of these molecules have docking scores that are significantly better than known SARS-CoV2 3CLpro inhibitors, suggesting that these molecules are also potential inhibitors of the SARS-CoV2 3CLpro protease. Some have been previously reported to inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral 3C-like proteases.

8.
International Journal of Pharmacology ; 18(7):1340-1352, 2022.
Article in English | EMBASE | ID: covidwho-2066718

ABSTRACT

Paxlovid™ is a combination of Nirmatrelvir and Ritonavir antiviral pills with good oral bioavailability. In clinical studies, treatment of the patients infected with SARS-CoV-2 with Paxlovid™ within three to five days of the appearance of symptoms significantly reduced the hospitalization rate as well as mortality. It is the first oral antiviral treatment for the COVID-19 which received USFDA approval for EUA on 22nd December, 2021. Nirmatrelvir inhibits the replication of SARS-CoV-2 while another antiviral drug, Ritonavir, is given in combination to enhance the bioavailability of Nirmatrelvir. Molecular interaction studies have shown that Nirmatrelvir binds covalently with the catalytic triad of the active site of the viral protease enzyme (3CLPRO). It, therefore, acts by stopping the SARS-CoV-2 replication by its ability to block the translation of the viral genetic materials. Research studies conducted have proven the efficacy of this oral anti-viral drug in mild to moderate COVID-19 patients beside its ease of oral administration and good oral bioavailability. Alternative synthetic methods to scale up the synthesis of this potent molecule are needed to reduce the treatment cost of the COVID-19. Extensive clinical research on a larger group population is also underway for ensuring the safety and efficacy of this medication in the battle against the COVID-19 pandemic.

9.
Viruses ; 14(10)2022 09 29.
Article in English | MEDLINE | ID: covidwho-2066548

ABSTRACT

In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptide Hydrolases , Membrane Glycoproteins
10.
Arhiv za Farmaciju ; 72(2):212-230, 2022.
Article in English | EMBASE | ID: covidwho-1988384

ABSTRACT

Herbal medicinal products are known for their widespread use toward various viral infections and ease of disease symptoms. Therefore, the sudden appearance of the Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) and COVID-19 disease was no exception. Bioactive compounds from natural plant origin could act on several disease levels: through essential immunological pathways, affecting COVID-19 biomarkers, or by halting or modulating SARS-CoV-2. In this paper, we review the recently published data regarding the use of plant bioactive compounds in the prevention/treatment of COVID-19. The mode of actions responsible for these effects is discussed, including the inhibition of attachment, penetration and release of the virus, actions affecting RNA, protein synthesis and viral proteases, as well as other mechanisms. The reviewed information suggests that plant bioactive compounds can be used alone or in combinations, but upcoming, extensive and global studies on several factors involved are needed to recognize indicative characteristics and various patterns of bioactive compounds use, related with an array of biomarkers connected to different elements of inflammatory and immune-related processes of COVID-19 disease.

11.
FEBS Open Bio ; 12:65, 2022.
Article in English | EMBASE | ID: covidwho-1976677

ABSTRACT

The SARS-CoV-2 pandemic, waning now after over two years, generated a global response from the structural biology community. The first experiments at the 4th generation Synchrotron source SIRIUS, in Brazil, were focused on the structural studies of the viral proteases, including those encoded by SARS-CoV-2, their transition states and potential ligands. In this talk, we will present some of the findings concerning SARS-CoV-2 proteases and the status of MANACA beamline, as well as the latest developments in phasing (native SAD), multi-crystal, serial and room-temperature data collection. The MX beamline, MANACA, (MAcromolecular micro and Nano Serial CrystAllography), was commissioned during 2020, and the initial results helped to assess not only important features of the proteins and ligands, but also the quality and potential of the new beamline. Natural products and fragment libraries have been used by our users and collaborators [1], in academic and industrial settings. MANACA is optimised for high flux, micro-beam size and small beam divergence (0.44 mrad). Setups for serial crystallography data collection and analyses, as well as automation procedures, are being prepared [2]. The great beam characteristics provided by Sirius [3] and the high stability and precision of the optics and experimental station allows the diffraction of challenging samples such as viruses (and other crystals with large unit cells), membrane proteins and complexes, which commonly yield small crystals. The experiment control uses a userfriendly graphical interface (MXCuBE) [4], and automatic data processing (from data reduction to initial modelling) is available. The MANACA beamline is also prepared for remote access and has already performed remote experiments with foreign scientists.

12.
Biomedicines ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1883997

ABSTRACT

During an emergency, such as a pandemic in which time and resources are extremely scarce, it is important to find effective and rapid solutions when searching for possible treatments. One possibility in this regard is the repurposing of available "on the market" drugs. This is a proof of the concept study showing the potential of a collaboration between two research groups, engaged in computer-aided drug design and control of viral infections, for the development of early strategies to combat future pandemics. We describe a QSAR (quantitative structure activity relationship) based repurposing study on molecular topology and molecular docking for identifying inhibitors of the main protease (Mpro) of SARS-CoV-2, the causative agent of COVID-19. The aim of this computational strategy was to create an agile, rapid, and efficient way to enable the selection of molecules capable of inhibiting SARS-CoV-2 protease. Molecules selected through in silico method were tested in vitro using human coronavirus 229E as a surrogate for SARS-CoV-2. Three strategies were used to screen the antiviral activity of these molecules against human coronavirus 229E in cell cultures, e.g., pre-treatment, co-treatment, and post-treatment. We found >99% of virus inhibition during pre-treatment and co-treatment and 90-99% inhibition when the molecules were applied post-treatment (after infection with the virus). From all tested compounds, Molport-046-067-769 and Molport-046-568-802 are here reported for the first time as potential anti-SARS-CoV-2 compounds.

13.
mBio ; 13(3): e0078422, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807327

ABSTRACT

The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Amino Acids , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases, Firefly , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
14.
Acta Crystallographica a-Foundation and Advances ; 77:C710-C710, 2021.
Article in English | Web of Science | ID: covidwho-1762429
15.
J Biol Chem ; 298(4): 101739, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693313

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.


Subject(s)
Coronavirus 3C Proteases , Enzyme Assays , Fluoresceins , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays/methods , Fluoresceins/chemistry , Fluoresceins/metabolism , High-Throughput Screening Assays , Humans , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , COVID-19 Drug Treatment
16.
J Biol Chem ; 298(3): 101658, 2022 03.
Article in English | MEDLINE | ID: covidwho-1654686

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Subject(s)
Aminoquinolines , Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , SARS-CoV-2 , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Internalization/drug effects
17.
ChemMedChem ; 17(9): e202200016, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1653198

ABSTRACT

The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Papain-Like Proteases , Humans , Lactams , Leucine , Mass Spectrometry , Nitriles , Peptide Hydrolases , Proline , Protease Inhibitors/pharmacology
18.
Biomed Pharmacother ; 133: 111035, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1060177

ABSTRACT

Outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have produced high pathogenicity and mortality rates in human populations. However, to meet the increasing demand for treatment of these pathogenic coronaviruses, accelerating novel antiviral drug development as much as possible has become a public concern. Target-based drug development may be a promising approach to achieve this goal. In this review, the relevant features of potential molecular targets in human coronaviruses (HCoVs) are highlighted, including the viral protease, RNA-dependent RNA polymerase, and methyltransferases. Additionally, recent advances in the development of antivirals based on these targets are summarized. This review is expected to provide new insights and potential strategies for the development of novel antiviral drugs to treat SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Viral Nonstructural Proteins/drug effects , Drug Delivery Systems , Drug Development , Humans
19.
Biochimie ; 182: 177-184, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1039291

ABSTRACT

The main protease (Mpro) of SARS-CoV and SARS-CoV-2 is a key enzyme in viral replication and a promising target for the development of antiviral therapeutics. The understanding of this protein is based on a number of observations derived from earlier x-ray structures, which mostly consider substrates or ligands as the main reason behind modulation of the active site. This lead to the concept of substrate-induced subsite cooperativity as an initial attempt to explain the dual binding specificity of this enzyme in recognizing the cleavage sequences at its N- and C-termini, which are important processing steps in obtaining the mature protease. The presented hypothesis proposes that structural heterogeneity is a property of the enzyme, independent of the presence of a substrate or ligand. Indeed, the analysis of Mpro structures of SARS-CoV and SARS-CoV-2 reveals a conformational diversity for the catalytically competent state in ligand-free structures. Variation in the binding site appears to result from flexibility at residues lining the S1 subpocket and segments incorporating methionine 49 and glutamine 189. The structural evidence introduces "structure-based recognition" as a new paradigm in substrate proteolysis by Mpro. In this concept, the binding space in subpockets of the enzyme varies in a non-cooperative manner, causing distinct conformations, which recognize and process different cleavage sites, as the N- and C-termini. Insights into the recognition basis of the protease provide explanation to the ordered processing of cleavage sites. The hypothesis expands the conformational space of the enzyme and consequently opportunities for drug development and repurposing efforts.


Subject(s)
COVID-19/virology , Protein Conformation , SARS-CoV-2/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Proteases/chemistry , Viral Proteases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Catalytic Domain , Drug Design , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Substrate Specificity
20.
J Biol Chem ; 295(50): 17365-17373, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-872797

ABSTRACT

The main protease (3CL Mpro) from SARS-CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication. 3CL Mpro possesses an unusual catalytic dyad composed of Cys145 and His41 residues. A critical question in the field has been what the protonation states of the ionizable residues in the substrate-binding active-site cavity are; resolving this point would help understand the catalytic details of the enzyme and inform rational drug development against this pernicious virus. Here, we present the room-temperature neutron structure of 3CL Mpro, which allowed direct determination of hydrogen atom positions and, hence, protonation states in the protease. We observe that the catalytic site natively adopts a zwitterionic reactive form in which Cys145 is in the negatively charged thiolate state and His41 is doubly protonated and positively charged, instead of the neutral unreactive state usually envisaged. The neutron structure also identified the protonation states, and thus electrical charges, of all other amino acid residues and revealed intricate hydrogen-bonding networks in the active-site cavity and at the dimer interface. The fine atomic details present in this structure were made possible by the unique scattering properties of the neutron, which is an ideal probe for locating hydrogen positions and experimentally determining protonation states at near-physiological temperature. Our observations provide critical information for structure-assisted and computational drug design, allowing precise tailoring of inhibitors to the enzyme's electrostatic environment.


Subject(s)
Coronavirus 3C Proteases/chemistry , Models, Molecular , Neutrons , SARS-CoV-2/genetics , Catalytic Domain , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL